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i. Acoustic resonance oscillations in the products of the detonation of homogeneous 
gaseous mixtures were first analyzed in [1-4], where it was pointed out that the experimental- 
ly measured spin frequency of the "head" mes agreed closely with the frequency of the first 
harmonic w11 of the transverse oscillations of a cylindrical column of gas with constant 
parameters, corresponding to a state in the Jouguet plane. The perturbations of the flow 
were studied in [1-4] without taking into account the existence of a reaction zone. Since 
the disturbances propagate from the reaction zone downstream and do not penetrate from the 
supersonic region through the Chapman-Jouguet surface to the front, in these works the ques- 
tions of why the detonation front is itself unstable and why ~es = ~11 are now answered. 

A qualitative study of the stability of a plane detonation wave with random curvature 
of the combustion front was carried out in [5, 6] for a model of a detonation with a period 
of induction followed by an instantaneous reaction. 

The problem of the stability of a detonation front with an adjacent one-dimensional 
reaction zone was solved in [7-9] in a more accurate mathematical formulation for gaseous 
mixtures. It was pointed out that an overdriven detonation wave remains stable as the libera- 
tion of heat behind its front approaches zero [7, 9]. The stability of the main solution 
of the equations of hydrodynamics and chemical kinetics for a Chapman-Jouguet detonation 
relative to small perturbations was studied in [8], where some of the characteristic numbers 
were obtained and it was found that the frequencies of the cylindrical harmonics which grow 
with the passage of time depend on the ratio of the width of the reaction zone to the radius 
of the tube. 

An acoustic model, presenting a criterion for the development of spontaneously arising 
transverse waves, was proposed in [i0], and it was shown that for any reasonable kinetics 
infinitesimal high-frequency transverse disturbances are amplified in the exothermal reaction 
zone of a Chapman-Jouguet detonation. The theory in [ii] describes the mechanism of the 
earliest behavior of the wavefront during the buildup of the transverse waves and shows that 
finite-amplitude waves will not appear in flames or shock waves accompanied by an endothermal 
reaction zone. 

Stationary spinning detonation states in a heterogeneous system consisting of a gaseous 
oxidizer in the volume of a pipe and a film of liquid fuel on the pipe walls were observed 
and studied experimentally in [12-15]. The model of spinning gas-film detonation which ap- 
peared later [16, 17] contains the following assumptions: combustion begins behind the 
detonation front of the mixture at a significant distance away from the front, and at the 
same time the combustion of the entire accumulated fuel mixture occurs instantaneously and 
all of the stored energy is liberated in the plane of a transverse section of the pipe; the 
strong explosion wave formed as a result propagates, and decays toward the front. It is 
proposed in [16, 17] that in a circular pipe, because of the symmetry, the explosion wave 
will not move along a spiral; during the motion of the detonation front such explosions oc- 
cur periodically as a fresh mixture is accumulated and periodically accelerate the motion 
of the forward front of the detonation wave. 

In reality, in the experiment the combustion of the mixture occurs gradually and con- 
tinuously in the entire reaction zone and begins practically immediately behind the detona- 
tion front (in a transverse wave acceleration of the combustion occurs only locally); in 
the rotating system tied to the "head" of the spin, the amplitude of the disturbances is 
stationary as a function of time and increases toward the front; the detonation wave propa- 
gates with a constant velocity; and, under the conditions of spinning detonation, the period- 
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dic explosion waves do not react deep in the reaction zone. Aside from these basic contradic- 
tions, the model of [16, 17] does not explain the reason for the rotation of the transverse 
wave and the tail, and it does not permit calculating their form. Based on what was said 
above, it is necessary to construct a model of spinning gas-film detonation. 

2. The change in the spin frequency in the gas-film system, noted above, when concen- 
tric inserts are introduced into the pipe [12], indicates that, as in gases, the spin is 
affected by the acoustic characteristics of the pipe. The experiments performed in [12-15] 
imply that the transverse wave, gradually transforming into a tail, rotates as a whole along 
a spiral trajectory with practically uniform pitch along the wall of the pipe and at any 
fixed moment in time it forms a spiral whose pitch increases away from the front. It is 
natural to propose that the basic reasons for the formation of the spiral form of a trans- 
verse wave and a tail is that the parameters of the flux change along the flow and that the 
spin frequency u s and ~zz are not equal. 

In this work the frequencies of spinning gas-film detonation are calculated and the 
effect of the nonuniformity of the parameters of the main flow on the form of the transverse 
wave and the tail in the subsonic and supersonic regions of the flow behind the detonation 
front is taken into account. 

To describe the gas flow in a system of coordinates fixed on the detonation front, we 
write out the differential equations for the conservation of the mass, momentum, and energy 
fluxes taking into account the flow of mass from the film into a distinguished elementary 
volume, friction, and thermal processes (liberation of heat and heat losses): 

p* + V (p'n*) = J//; ( 2 . 1 )  

o on-- p ,  
P* ,0t + (u*.V) u* = --Vp* + -~'/(uo u*) + Fo; ( 2 . 2 )  

and, the equation of state of the gas 

P* = P*(P*, s*). (2.4) 

Here, O* = 0*(x, t), p* = p*(x~ t), u* = u*(x, t), s* = s*(x, t), e* = e*(o*, s*) are, re- 
spectively, the density, pressure, velocity, specific entropy, and internal energy of the 
particles of the gas occupying the position x at the time t; F~ is the volume density of 
the friction force; M is the inflow of fuel mass into a unit volume per unit time; Hf and hf 
are the liberation of heat per unit weight of the fuel and the specific enthalpy of the fuel; 
Qm is the volume heat flow toward the boundary; the index ~ refers to parameters evaluated 
at the boundary (wall); u~ = U 0 (U 0 is the velocity of the detonation). The system (2.1)- 
(2.4) describes a flow in a two-phase gas-film system under the assumption that the parameters 
M, F~, Q~ are averaged over the entire cross section of the pipe. 

If, as in [18-20], the flow in the pipe behind the front of the stationary detonation 
is assumed to be one-dimensional and the parameters of the gas (u0, 90, e0, P0, To - the 
temperature) are averaged over the cross section of the pipe, then the differential conserva- 
tion equations can be written in the form 

Z = o~ (poUo) ~r; (2 .5)  

0 u  0 ' 0 

poUo -gTz = az Po + Fo + 2Q (uo -- uo); 

o[( o ( 
0-7 Po% eo+ =--~z(UoPo) + ~ I  h ! + H  I +  --Q,o+Fcouo; 

and, the equation of state 

(2.6) 

(2.7) 

Po = poRTo, ( 2 . 8 )  

where z is the coordinate oriented away from the front along the flow; M = (kH/A)(pu)~; F~ = 
(H/A)[(I - k)T~ ~ + kT~]; Q~ = (H/A)[(I - k)q~ ~ + kqm]; (pu)m is the mass flux from a unit 
surface area per unit time; k is the fraction of the surface covered with the liquid fuel; 
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H and A are the perimeter and area of the cross section of the pipe; T~ and q~ are the fric- 
tion stress and the heat losses per unit surface area (the superscript 0 refers to parameters 
on the dry wall); and R is the universal gas constant. 

In some experiments, states of spinning gas-film detonation with a transverse wave of 
the acoustic type, which is weak everywhere behind the flow, are observed. If there is a 
strong transverse wave near the front (the wave of a shock or shock-acoustic type), then 
its amplitude decays to zero toward the axis of the pipe and eight to ten pipe diameters 
from the front the wave degenerates everywhere in the volume into a weak acoustic wave [12-15]. 

Assuming that the pressure disturbances accompanying spinning detonation are small, 
we shall study the problem of the propagation of small disturbances in an inhomogeneous medium. 
Let some exact solution of the equations (2.1)-(2.4) - the basic motion - be known: p* = 
p0(x, t), p* = p0(x, t), s* = s0(x, t), u* = u0(x, t). We shall seek a solution in the form 
P* = P0 + 6P, P* = P0 + 6p, s* = s o + ~s, u* = u 0 + 6u [p, p, u, and s are small corrections 
to the main solution (its disturbances), and 6 is a parameter]. 

In what follows we shall always be concerned with the case when the scale of the changes 
in the parameters of the main flow L is much greater than the scale of the changes in the 
parameters of the perturbed flow s 

L > > / . .  ( 2 . 9 )  

The f i r s t  law of  the rmodynamics  and ( 2 . 4 )  f o r  i s e n t r o p i c  d i s t u r b e d  p r o c e s s e s  (6s  + 0) 

2 0 %  ~176176 ~/dP~ I ) 
or processes such that c~fip>>~s 6s, cg6p>>. 8s (the velocity of sound co(x, t ) =  o ]/ dPo So=C~ 

Po 
imply that 6e ~---~p, ~P ~---c~p. Neglecting the effect of perturbed processes on the mass 

flow rate from the film, friction, and thermal processes (i.e., 6~I, 6Fm, 6Q~ + 0) and taking 
into account (2.9), after the standard linearization procedure (in the limit 6 + 0) the sys- 
tem (2.1)-(2.4) assumes the form 

Dop + PoV u = O ;  

Dou + ~Vp = O; 

p = c~p, 
where Do = 8 / 3 t  + u0"7 .  

In  d e r i v i n g  ( 2 . 1 1 )  we employed t h e  f o l l o w i n g  e s t i m a t e :  

au l U o ' V U l ~ - -  Vp N T/ ~ ~**~ t, ~ poZ, 

"" L p--o N L---n a" 

(2.10) 

(2.11) 

(2.12) 

Here ~, is the time scale over which the disturbed parameters change; p0 ~ is the density 
of the gas in front of the front; a0 ~ volume density of the liquid phase in the system; 
a = a0~ ~ coefficient of stoichiometry (a < i); n = p0/p0 ~ > I. Since s r L, u 0 - 0.2U0, 
the term Mu/p0 in (2.11) [or the term M6u in the linearized equation (2.2)] can be neglected 
compared with the remaining terms. Under these assumptions (2.2) and (2.3) are equivalent 
for weak disturbances. Unlike [1-4], (2.10)-(2.12) take into account the dependence of the 
parameters of the medium on the coordinates - here there does not exist a coordinate system 
moving with the gas, in which u0(x, t) = 0 everywhere. 

Applying to (2.11) the curl operation, we obtain, taking into account (2.9), the equation 

curl u = -- (u0.V)curl u (2.13) 
at 

which indicates that in a fixed particle of the medium, moving along the trajectory, curlu = 
const. For the case of harmonic oscillations of the particle (which are studied in what 
follows) the time-averaged value of the velocity u equals zero, so that curlu = 0 and there 
exists a potential @ such that 
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( 2 . 1 4 )  u =V~. 

Substituting (2.14), Eqs. (2.10)-(2.12) assumes the form 

D0p + 90A~ = 0,: Dec P + coP/Po = 0,: 

whence f o l l o w s  an e q u a t i o n  f o r  $ :  

~ = coA~ - -  2uo.V 77 uo'V (u0"V~). ( 2 . 1 5 )  ot 2 

An e q u a t i o n  o f  t h i s  form in  a s t a t i o n a r y  c o o r d i n a t e  s y s t e m  f o r  a u n i f o r m  f l o w ,  moving r e l a t i v e  
to it with a constant velocity u0(x, t), is presented in [21]. 

Applying the operations 8/8t and 7 to (2.10) and the operation 7 to (2.11), we obtain 
an equation for p analogous to (2.15). The equation for p has the same form, taking into 
account (2.12). 

In a new coordinate ~ system x = x - V~, t = z, moving with the velocity V relative to 
the front, making the tranaformations 7 = 7, A = A (the tilde denotes the new variables), 
8/3t = 8/8~ -V'7, 82/8t 2 = 32/8T 2 - 8V/Sz'~- 2(V'~)8/8~ + (V'7)(V'7), Eq. (2.15) assumes 

the form ~176  + 2 ( u o ' V ) ( V ' V ) ~ - - ( V ' V ) ( V ' V ) ~ .  This trans- 0~ z 
f o r m a t i o n  o f  c o o r d i n a t e s  i s  d e s i r a b l e ,  f o r  example ,  in  o r d e r  t o  r e d u c e  t h e  e q u a t i o n  o f  t h e  
mixed type obtained in some region to an equation of the elliptic type with ~(x, t) - exp" 
(imt), i = VrZi. Assuming the main flow behind the front of a stationary detonation wave 
is one-dimensional, in an inertial coordinate system moving along the axis of the pipe, for 
steady-state wave phenomena we obtain the equation 

o2~o or  ( 2 . 1 6  ) _ ~ 2 ~  = c~A~ - -  (u 0 - -  V)~o- ~ - -  2 i ~  (u 0 - -  V)  ~-~, 

which is an elliptic equation in the laboratory coordinate system in the region behind the 
Chapman-Jouguet point, whose solution we seek among the class of smooth functions which are 
periodic in 8 (the angle along a circle). The condition of impenetrability is imposed on 
the pipe wall (r = R0): 

0~1,=% = 0. ( 2 . 1 6 a )  

On t h e  f o r w a r d  shock  f r o n t  w i t h  t h e  form z = F ( r ,  0, t ) ,  where  F ( r ,  0, t )  << R0, f rom 
t h e  laws o f  c o n s e r v a t i o n  o f  mass ,  momentum, and e n e r g y  f o r  a c u r v i l i n e a r  shock  and t h e  con-  
d i t i o n s  of conservation of the tangential components of the velocity we can write the rela- 
tions 

I I I 0"-7" F + = g T r  ' ~ p + = g ~ '  ~-z F+ = /O- t  ( 2 . 1 6 b )  

(the index + indicates a state to the right of the shock). For an ideal gas 

g=Uo-u,  v~ ' " 

Here  M1 z = u l i / c 1 2 ;  t h e  i n d e x  1 r e f e r s  t o  t h e  s t a t e  b e h i n d  t h e  p l a n a r  shock  f r o n t .  

E q u a t i o n  ( 2 . 1 6 b )  i m p l i e s  t h a t  

( 2 . 1 6 c )  

~ 02~~ I . ( 2 . 1 6 d )  
g 0-7J7 ~+ = -f-b-77F/~,+ 

In the most general case the boundary conditions are written analogously to (2.16b) and 
(2.16c), where 

[ u 1 (  RTI\OI I g t-- t 
g=Uo- -U , ,  ! =  oI t ( 111,] ( 2 . 1 6 e )  

i -  orl  1 -  ) 

(I is the specific enthalpy of the gas). 
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We seek the solution of (2.16) in the form @= R(z)Z(z)@(O)exp(i~t). Separating the 
independent variables, for G(@) we obtain @"/G = -m ~, 0 =~@mexp(i~@) (m are integers). 

The equation for R(r) is 

R"/R ~- R ' / r R  - -  m~/r ~ = --~3, 

and its solution is R = RmJm(%r), where Jm is a Bessel function of the first kind of order m. 
Taking into account (2.16a), we have 

J~ (%buR0) = 0 (2.17) 

[%km is the k-th value of %m, satisfying (2.17)]. 

In the particular cases of single-head spinning detonation (one singularity along the 
radius and one along the circumference of the pipe, k = m = i), %11R 0 = 1.84. Then from 
(2.16) we obtain the following equation for Z(z) in the system of the front 

2 2 (t -- M 2) Z"/Z -- 2icoMco~Z'/Z + (o~ /Co -- ~ )  0 ( 2 . 1 8 )  

(M = u 0 / c  0 is the Mach number of the flow). 

The form of the solution (2.18) is most simply analyzed if it is assumed that there 
exists a region fl0 behind the reaction zone with constant parameters u0(z) = u00, c0(z) = 
Coo. We seek the solution in the form Z = Z00exp(i$11z), substituting which into (2.18) 
we obtain 

/ c ~ 1 7 6  M~~ (2.18a) ~11 = ~{o0/Co0__ V 2 2 
l - -  M~o 

(Moo = Uoo/Coo) .  The t a i l  in  flo i s  a s p i r a l  w i t h  a u n i f o r m  p i t c h  h o = 2~/~11,  and a s l o p e  
angle ~o with respect to the generatrix of the pipe: tan~0 = ~zR0 �9 It is obvious that 
h 0 and r depend on the coordinate system. Since ~la,= ~0RO exp [i(~nx-~t)], in a new coordi- 
nate system moving parallel to the pipe axis (x = x - V~) the frequency ~ = m + ~11V. This 
effect is called the acoustic Doppler effect. If m = m11 = ~11c00, then, as one can see 
from (2.18a), $11 = 0 - the tail is parallel to the generatrix of the pipe and the frequency 
of the oscillations is independent of the coordinate system. In the reaction zone, where 
the flow parameters u 0 and c o depend on x, $~i is not constant and the uniformity of the 
pitch of the spiral is destroyed. 

Equation (2.18) is a second-order equation with a regular singular point z, such that 
M = 1 for z = z,. The asterisk here and in what follows denotes a value in the Chapman- 
Jouguet plane. The frequency m is a parameter, and the boundary condition on the front 
(2.16d) is a particular case of the condition imposed on the characteristic values for (2.18). 

We introduce the coordinate x = z~ - z (the x axis is oriented from z = z... toward the 
front), and we denote the function Z(x~ by X(x). Then (2.18) and (2.16d) assume the form 

X" (1 - -  M 2) + 2io)McolX ' + (r - -  ~1) X = O; ( 2 . 1 9 )  

Xf = -- i~ /g - lXf  ( 2 . 1 9 a )  

( t h e  index  f i n d i c a t e s  t h a t  t h e  v a r i a b l e  must  be e v a l u a t e d  on t h e  f o r w a r d  f r o n t  o f  t h e  s p i n  
d e t o n a t i o n ) .  Near t h e  s i n g u l a r  p o i n t ,  c o n f i n i n g  a t t e n t i o n  t o  s e c o n d - o r d e r  i n f i n i t e s i m a l s  
in x in the series expansion of the terms in Eq. (2.19), we obtain 

TABLE i 

lV u(z) I ; T"(z)lr*=c2(z)/c* 
i 

i alz ~- Ul I i q- ZT1/L 1 

2 Uo [i -- b 2 exp (asz)] I "~o~ -- z2 exp(~2z) 

3 

TABLE 2 

Vo, cmll u,, cmll c,,cm/ l "~, Mf 
s e c  " | 1  s e c  I s e c  

a~ .-{- u, I l + ~l/La 

4-5 [i48,088127~007 

5,2 li7i,t24p8.~i7 

6 li97,451131,i74 

66,640 li,2992 
I 

73,98611.2901 

82~4451i ,2810 
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x )Ix,, 
\Txl, 

p . =  .o 2, O x W;x ." 
r 

(2.20) 

3. For calculations of the spatial structure of the disturbance wave it is important 
to know u0(z) and c0(z). Because of the lack of data an uncertainty arises in the descrip- 
tion of M, Fm, Qm in the theoretical determination of the parameters of the main flow, and, 
in addition, the calculation of u0(z) and c0(z) is not the basic problem and makes the cal- 
culations too difficult. It is therefore more useful to fix empirical profiles u0(z) and 
c0(z) , corresponding satisfactorily to the experimental data [13, 14] (Table i). Strictly 
speaking, in this case the functions u0(z) and c0(z) must satisfy Eqs. (2.1)-(2.3) or (2.5)- 
(2.7) with additional conditions imposed on M, F~, and Qe. In Table I, in variants 1 and 
2, u(L I) = u(LI)/U 0 and T0(LI)/TI, respectively, coincide at z = LI, and in variants 2 and 
3 they coincide at z = z,. Taking this into account, 

- ;(L1)], a l = ( u ( L 1 ) . - - u ~ ) / L ~ ,  b 2 = i - - u x ~  a2=/-~ln ~ - - ~  j~ 

t In (O,I/T~)~ 

% = (u ,  -- ul)/L1, L a = "qz,/[(c, /cl)  2 - -  1]. 

The parameters u(L1), T0(LI)/T I, Ll = LI/R0 are given and were varied as follows: u(L I) = 

0.7 and 0.8; ~i = i, 1.25, and 1.5; ~2 = ~i + 0.i; LI = 10-32. Here it is assumed that the 
liberation of energy continues behind the Chapman-Jouguet plane, and in variants 1 and 3 
the quantity z is bounded by the value when u(z) ~ U 0. 

The values of ul, c I and ~i in Table 2 are determined from the calculation of the state 
behind the flat shock front for oxygen, whose properties were taken from [22], for different 
Mach numbers of the detonation wave (Mf = U0/c0 ~ co o = 329.08 m/sec is the velocity of sound 
in front of the wave front). Figure 1 shows the dimensionless variables u0(z) and c0(z) 
(curves 1-3), corresponding to N = 1-3 (see Table i) with Mf = 5.2, u(L I) = 0.7, ~i = i, 
L I = 32. 

Equation (2.19) was solved by the method of finite differences on an M40-30 computer, 
the first and second derivatives were evaluated using the difference relations 

X ' { x )  = X(x+h)2h-- X ( x - -  h)~ X" (X)= X ( x +  h)--  2X(X)h ~ + X ( x - -  h) 

(h i s  the s tep along x) ,  which provide an approximation of second-order accuracy for  (2.19);  
here the mismatch 

,Io 

o,a 

j ~ . - l -  

. .-----a"-i 
2 "  

0 4 9 12 18 20 24 28 J2 z/R o 

Fig. 1 
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.26 

z/Ro 
a 

28 

,Y2 

"4O 

"44 

z/Ro 
b 

Fig. 2 

, /  2 ~  "X,2~, 
I \ 

J' I '  / l \ 
l-J Ii-21 -I o d *  < 21 2,R~cx? 

k \  -._,--- / , , , ,  j x , /  

Fig. 3 

[h  ~ (i  - -  M 2) d4X ir ;~I d3X ~ he I daX I I 12 ~ x  4 ~ I 3c ~ "- dxa 

The stability of the difference scheme was checked in the calculation by varying h. 

For computational convenience at the Chapman-Jouguet point it was assumed that X, = i, 
X(• was calculated using the relation (2.20) and the values of X at subsequent points were 
determined from the difference equation. 

The initial approximation ~0 = k11c0(z,) was used for the frequency. Each n-th cycle 
for selecting the next values of mn consisted of four calculations through the zone up to the 

detonation front with values ~= ~n-lq-~(14-i) corresponding to the centers of four 

squares in one square centered at the point ~n-1 (no e 0 is an integer, j = i, ..., 4). Among 
the four values of mn J for the next approximation a frequency Xf' = -ifg-lmnXf and Xf', ob- 
tained from the numerical calculation. The computational cycles were repeated until an accu- 
racy ~0.5% was achieved. 
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TABLE 3 

Mf N 

4,5 

2 

5,2 I ' 
I 
I 
2 
2 
2 
2 
2 
2 

6 22 
2 

0,5 

t 
t 
t 
1 
t 

0,5 
0,5 

0,5 

L 

20 
32 
32 
32 
32 

t0 
t6 
20 
t6 
32 
32 
32 
32 
32 

20 
32 
32 

~(L,) 

0,7 
0,7 

0,8 
0,8 

0,7 
0,7 
0,7 
0,7 
0,7 
0,7 
0,7 
0,7 
0,85 

0,7 
0,7 
0,8 

t5,551 
24,88 
24,88 
t6,196 
t0,272 

i5,866 
12,2t 
1t,178 
11,32 
22,626 
26,266 
22,626 
16,192 
8,764 

i3,07 
20,92 
10,27 

i 

mlsec 

925,678 
925,678 
925,678 
887,391 
756,t83 

1t90,t2~ 
982,6t~ 
923,931 

1019,35 
t019,32( 
t095,04 
t019,32{ 
862,09 
821,44 

1127,58 
tt27,58 
926,33 

gH, m/sec 

--t309,248 
--1309,248 
--t309,248 
--1309,248 
--3879,836 * 

--1575 
--t575 
--1575 
--t550,9t 
--t550,91 
--t550,91 
--3999,78 * 
--3999,78 * 
--3999,78 * 

--1822,t56 
--1822,t56 
--3879,84 * 

Re (~Ro), 
i m/see 

20t7,6t6 
20t8,032 
20t6,628 
2021,267 
t329,407 

204t,204 
2041,963 
2042,87 
2071,598 
2066,963 
2067,995 
1500,267 
1499,t93 
t502,53 

2190,233 
2186,69 
t698,5t 

Im (~Ro), 
m/sec 

--68,t96 
--37,009 
--17,933 
--38,069 
--15,588 

--54,532 
--43,258 
--40,675 
--89,75 
--44,874 " 
--53,126 
--31,574 
--16,955 
--21,51 

--79,02 
--49,13 
--24,34 

*The boundary condition was calculated for oxygen from (2.16d) 
taking the properties from the tables of [22], and in the other 
cases it was calculated from (2.16c); the value of N corresponds 
to Table i. 

4. The calculations were compared with experiment for the spatial structure (form) 
of the acoustic wave and the value of the spin frequency. In accordance with the solution 
of Bessel's equation, the intensity of the wave decays along the radius toward the center 
of the pipe; along the pipe the crest of the wave is a spiral described by the relation y = 
$1(x)R0 [the y axis is oriented perpendicular to the x axis, X = X 0 exp (iS), ~ = ~1(x) + 
i$2(x)]. The quantity exp (-$2(x)) characterizes the change in the relative amplitude @ of 
the disturbance wave along the x axis. 

Figure 2 shows in the y/R0, z/R 0 plane (unfolding of the pipe on a surface) examples 
of calculations (a, b) of the form of the disturbance wave and two structures of spinning 
gas-film detonation (c) according to the experiments of [13-15] with a transverse wave of 
the shock 1 and acoustic 2 types. Figure 2b shows a continuation in the coordinate z/R 0 of 
the curves in Fig. 2a; here, L I = 32, u(L I) = 0.7, T I = 1 (except curve 2', where ~I = 1.25). 
Curves i, 2, and 2' were calculated for N = 2 (see Table i), for Mf = 4.5, 5.2, and 6, re- 
spectively. In Fig~ 2a, b, according to [12-15], the shaded region contains diverse experi- 
mental structures of spinning detonation, obtained in pipe with diameters ranging from 27 
to 70 mm. For convenience the experimental data and all computed curves in Fig. 2 were con- 
structed so as to emanate from one point on the central line of the forward front z = 0. 
In these and other variants of the calculations the theory agrees well not only qualitative- 
ly but also quantitatively with experiments. 

In Fig. 3 the curves X(x) = Re (X(x)) + i Im (X(x)) with -z, ~ x ~ z,, characterizing 
simultaneously the form of the crest of the disturbance wave, and its amplitude, were con- 
structed for 2 and 2, (see Fig. 2a, b). The numbers on the points indicate the correspond- 
ing values of x/R0; in the Chapman-Jouguet plane X(0) = I. It is evident that, as in the 
experiments, the amplitude of the disturbance increases toward the forward front of the de- 
tonation wave. 

The values of m calculated for a number of variants are presented in Table 3, whence 
it is evident that the spin frequency ms = Re (m) is virtually independent of the profiles 
of the flow parameters in the reaction zone, and the boundary conditions on the front g/f 
have an appreciable effect on the value of ms. Re (m) is virtually independent of the accu- 
racy of the expansion and of the calculation in the vicinity of the singular point; for ex- 
ample, if X(• is evaluated according to X(!h) = X, rather than (2.20). The profiles of 
the main flow affect the value of Im (m), which determines the growth in the amplitude of 
the disturbance as a function of time. 
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The frequency ms can be evaluated from the expression 

m~= I / / ( I  + u~l/g) 2 -  l~c~/g ~' (4. i )  

which agrees to within less than 1% with Re (~) from Table 3 and is obtained from (2.18) 
under the assumption that near the detonation front $ = klZ (the linear approximation holds). 
Then on the front for (2.18) we can write the boundary conditions 

Z f  ifg-l~,Zf~ Z f  = --  ] ~sg Zf~ 

which  a r e  c o n d i t i o n s  on ~s .  To a c c e l e r a t e  t h e  p r o c e s s  o f  f i n d i n g  a s o l u t i o n  ~,  i n  a number  
o f  v a r i a n t s  t h e  i n i t i a l  a p p r o x i m a t i o n  ~0 = ~s was g i v e n .  

The s p i n  f r e q u e n c y  us  = Re (~)  a g r e e s  b e t t e r  w i t h  t h e  e x p e r i m e n t a l  v a l u e s  o f  t h e  f r e q u e n c y  
~es  = ( 1 - 1 - 6 )  "103 m / s e c ' R 0  -1 (m) [12 -15 ]  in  t h e  c a s e  when t h e  b o u n d a r y  c o n d i t i o n s  a r e  c a l c u -  
l a t e d  u s i n g  t h e  r e l a t i o n  ( 2 . 1 6 d )  ( s e e  T a b l e  3 ) .  The f r e q u e n c i e s  ~zz = X l l c , ,  c a l c u l a t e d  b a s e d  
on t h e  a c o u s t i c  t h e o r y  p r o p o s e d  in  [ 1 - 4 ] ,  d i f f e r  i n s i g n i f i c a n t l y  (on  t h e  a v e r a g e  by 10-15%) 
f rom Re ( ~ ) .  The s u r p r i s i n g l y  c l o s e  a g r e e m e n t  b e t w e e n  ~ z l  c a l c u l a t e d  e x a c t l y  and e x p e r i m e n t s  
i n d i c a t e s  n o t  o n l y  t h e  c o r r e c t n e s s  o f  t h e  method  d e v e l o p e d  in  [ 1 - 4 ] ,  b u t  a l s o  t h e  f a c t  t h a t  
Us depends  on t h e  r e s o n a n c e  c h a r a c t e r i s t i c s  o f  t h e  t r a n s v e r s e  s e c t i o n  o f  t h e  p i p e ,  d e t e r m i n -  
ing  Xzz, and t h e  v e l o c i t y  o f  s ound ,  which  v a r i e s  i n s i g n i f i c a n t l y  b e h i n d  t h e  f r o n t .  T h i s  
can  be s e e n  f rom F i g .  1 and a c o m p a r i s o n  o f  t h e  d e p e n d e n c e s  ( 4 . 1 )  and ~ z l  = X z z c , .  

The a p p r o a c h  d e v e l o p e d  in  t h i s  work e n a b l e s  e s t a b l i s h i n g  t h e  b a s i c  p r o p e r t i e s  o f  s p i n n i n g  
d e t o n a t i o n ,  c a l c u l a t i n g  t h e  s p i n  f r e q u e n c y ,  and t h e  fo rm o f  t h e  d i s t u r b a n c e  wave in  t h e  e n t i r e  
r e g i o n  o f  t h e  f l o w  b e h i n d  t h e  d e t o n a t i o n  f r o n t .  I t  was shown t h a t  t h e  s p i n  f r e q u e n c y  d ep en d s  
p r i m a r i l y  on t h e  b o u n d a r y  c o n d i t i o n s  on t h e  f o r w a r d  f r o n t .  When t h e  a s s u m p t i o n s  made a b o v e  
h o l d ,  t h e  r e s u l t s  o b t a i n e d  can  be t r a n s f e r r e d  t o  o t h e r  s y s t e m s  ( f o r  e x a m p l e ,  g a s - d r o p l e t  
s y s t e m s ) .  

T h e a u t h o r s  t h a n k s  V. V. Pukhnachev  f o r  u s e f u l  c r i t i c a l  r e m a r k s .  
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ISOTHERMS AND GRONEISEN FUNCTIONS FOR 25 METALS 

L. V. Al'tshuler, S. E. Brusnikin, 
and E. A. Kuz'menkov 

UDC 532.593+536.715:546.3 

i. Introduction. The study of the compressibility of materials at 0~ and at room 
temperatures is traditionally one of the main directions of research in high-pressure physics. 
In works devoted to this problem the sources of experimental information are "normal" iso- 
therms recorded on static setups at T = 293~ ultrasonic data, and especially shock-wave 
determinations of the Hugoniot adiabat. Based on dynamic experiments, the zero cold-compres- 
sion isotherms Pc(P) (Pc is the pressure at T = 0; p is the density) are found [i, 2] by 
separating the shock pressures into thermal and "cold" components under acceptable assumptions 
about the Gruneisen functions, characterizing the thermal elasticity of compressed bodies. 
In the widely acclaimed work [3], the isotherms of 14 metals are calculated within the frame- 
work of the Mie-Gruneisen equations of state according to the parameters of precisely measured 
Hugoniot adiabats and the approximate relation yp = ~0P0 (~ is the temperature-independent 
Gr~neisen constant). In this manner, in particular, the standard isotherms of copper molyb- 
denum, silver and palladium, used in [4] for calibrating fluorescence ruby pressure gauges 
for the megabar range, were calculated. In [5-8], more complete equations of state, includ- 
ing the electronic components and taking into account the anharmonicity of the vibrations 
of the crystal lattice, were employed for the interpretation of dynamic experiments for the 
same purposes. The "harmonic" Gruneisen coefficients were calculated here based on different 
variants of the theory of small vibrations which, however, do not have any strict justifica- 
tions. 

Another method for constructing the curves Pc(P) of the potential interaction and the 
normal isotherms pT(p) is based on the determination of the parameters of semiempirical po- 
tentials from the isentropic K0S or isothermal K0T bulk moduli of the initial state (T = 
293~ p = 0) and their derivatives with respect to the pressure - KiS or KiT. The values 
of K0S and K0T were found in [9-11] by means of analytic approximations of the isotherms, 
recorded up to p = 4.5 GPa. Different methods of approximation yielded stable values of 
K0T and very different derivatives KiT, which determined the extrapolation behavior of the 
curves. A somewhat better results using the same information was achieved in [12] in the 
description of isotherms by the Morse potential and by taking into account the sublimation 
energy, which had a stabilizing effect. 

The isentropic characteristics of the initial compressibility and their isothermai an- 
alogs are revealed with high reliability by ultrasonic measurements at atmospheric and high 
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